
Analysis of security in digital examinations

Kim Kling
Adrian Bjugård

TDA602 Language-based Security,
Department of Computer Science and Engineering,

CHALMERS UNIVERSITY OF TECHNOLOGY

May 2016

1

Contents

1. Background 3
1.1. System architecture . 3

2. Goal 4
2.1. Scope and limitations . 4
2.2. Testing Environment . 4

3. Description of Work 5
3.1. Running inside a Virtual Machine . 5
3.2. Modify and recompile Safe Exam Browser to remove security checks . . . 6
3.3. Accessing an exam server without Safe Exam Browser 8

4. Result 9
4.1. Running inside a Virtual Machine . 9

4.1.1. QEMU . 9
4.1.2. VirtualBox . 9

4.2. Modify and recompile Safe Exam Browser to remove security checks . . . 10
4.3. Accessing an exam server without Safe Exam Browser 11

5. Discussion 12
5.1. Fundamental Problems . 12
5.2. Running inside a Virtual Machine . 12
5.3. Modify and recompile Safe Exam Browser to remove security checks . . . 12
5.4. The future of digital examination . 13
5.5. Future work . 13

6. Conclusion 14

References 15

Appendix A. Individual Contribution 16

2

1. Background

Digital examinations are a way for institutions to make the work of grading easier, while
also giving students a comfortable environment to work in, eliminating problems with
student handwriting, and enforcing time restrictions.

Because an academic examination is a test of knowledge that is often awarded with
course credits, it is important that those taking the exam do not cheat. In regular written
exams this is generally done by having exam guards watching the students for signs of
odd behaviour such as, but not limited to, reaching into pockets, visiting the bathroom
multiple times, using unauthorised electronic devices, or communicating with other stu-
dents [1].

By introducing computers into the world of examinations, many new potential ways
for students to cheat are made possible. Some of which are not always as obvious to
an exam guard as with a written exam. Often it is even necessary for exam computers
to be networked in order to access the exam software, opening up even more potential
security vulnerabilities, and in certain cases students are even allowed to run parts of
the examination suite on their own hardware. One such example is Safe Exam Browser
(SEB) which advertises itself with the claim that “The software changes any computer
into a secure workstation” [2].

1.1. System architecture

The SEB application is an open source application [3] that implements the client in a
server and client structure. The client acts almost exactly like a regular web browser,
connecting to the examination server via HTTP or HTTPS depending on the server con-
figuration. The notable difference from a regular browser is that SEB locks down the
computer it is running on by disabling certain features:

• Shortcuts/Keys as Win, CTRL+ALT+DEL (Windows XP), ALT+F4, F1, CTRL+P
etc.

• Right-click
• Switch to other applications (unless permitted)
• Process monitoring and killing of not allowed processes starting up while SEB is

running
• Menu options on Windows Security Screen on Windows 7 removed while SEB is

running
• VMware shade when using VMware Horizon View Client for VDI
• Display and system idle sleep
• Print Screen/OS X screen capture

Notably SEB also claims to disallow running inside of a Virtual Machine (VM) [4].

3

2. Goal

The primary goal of our project is to break out of the controlled environment of a client
in a digital examination setup using SEB, and thus make it possible for us to run any ap-
plication simultaneously. While breaking out, we aim to successfully access the Internet
in a web browser while still taking the exam. Since the client is installed on a student
computer, we can use any tool at our disposal in our attempts to do so.

We will look at SEB and try to break the enforced restrictions of the application. The
restrictions include, but are not limited to, not running inside a VM, blocking access to
other applications, blocking multitasking, disabling certain hot-keys and more. See the
more extensive list of blocked features in Section 1.1.

2.1. Scope and limitations

We believe there are several possible ways to circumvent the security restrictions of SEB.
In order to limit the scope we are focusing on two specific ways; running SEB inside a
VM, and modifying the source code to build a version of SEB with the security restrictions
removed.

2.2. Testing Environment

In the experiments where a VM is used, we used both OS X 10.11 with VirtualBox version
5.0.10 r104061 and Arch Linux with QEMU version 2.5.1-1. For the experiments where
we used SEB natively, OS X 10.11 was utilised. For all experiments in VMs, we used
version 2.1.1 of SEB. For all experiments that required us to compile SEB from source,
we used the most current version in the official SEB GitHub repository, which at the time
(2016-05-10) was at commit 278c760e145173a93cbc4a732d756c53db5cd996.

4

3. Description of Work

This chapter will explain the method used to reach a result in our investigation.

3.1. Running inside a Virtual Machine

By running SEB in a VM, we have the ability to contain the SEB restrictions to our VM
software and the containing guest Operating System (OS). This enables us to run other
applications in the host OS without the knowledge of SEB, and multitask between those
applications.

To prevent this, SEB has checks to detect if it is being started from inside a VM and
refuses to run if that is the case. By looking at the source code for SEB we found the
function that performs this check. See Listing 1. [5]

Listing 1: The isInsideVM()-function
264 private s t a t i c bool Is InsideVM ()
265 {
266 using (var searcher = new ManagementObjectSearcher (” S e l e c t ∗ from

Win32 ComputerSystem ”))
267 {
268 using (var i tems = searcher . Get ())
269 {
270 foreach (var item in i tems)
271 {
272 Logger . AddInformation (” Win32 ComputerSystem Manufacturer : ”

+ item [” Manufacturer ”] . ToStr ing () + ” , Model : ” +
item [” Model ”] . ToStr ing () , null , nul l) ;

273

274 s t r ing manufacturer =
item [” Manufacturer ”] . ToStr ing () . ToLower () ;

275 s t r ing model = item [” Model ”] . ToStr ing () . ToLower () ;
276 i f ((manufacturer == ” mic roso f t corpora t ion ” &&

! model . Contains (” su r f a ce ”)) | |
manufacturer . Contains (”vmware”)

277 | | manufacturer . Contains (” p a r a l l e l s sof tware ”)
278 | | manufacturer . Contains (” xen ”)
279 | | model . Contains (” xen ”)
280 | | model . Contains (” v i r t u a l b o x ”))
281 {
282 return true ;
283 }
284 }
285 }
286 }
287 return fa l se ;
288 }

The check is made on lines 276 to 280 and blacklists specific vendors and products.
In particular, all hardware platforms from the manufacturer Microsoft Corporation ex-
cept Surface, everything from VMware, everything from Parallels Software, everything

5

from Xen and the specific model/products Xen and Virtualbox. We can not find the
VM software manufacturer QEMU mentioned in this list, which makes their virtualisa-
tion software a good candidate for our goal of running SEB in a VM. Since a blacklisting
technique is used it could be possible to modify the manufacturer and model information
of the VM to circumvent this particular check.

3.2. Modify and recompile Safe Exam Browser to remove security checks

Because SEB is open source, theoretically, any potential attempts by the server to identify
a modified version of SEB can be intercepted by us and replied to as if the application
was unmodified. Therefore one potential way of escaping the restrictions imposed by
SEB may be to modify the source code, removing the part of the code which blocks
the users ability to switch applications. Except for the removed usability restrictions, a
modified version of SEB needs to look and function exactly like an unmodified version,
so as to fool both an exam guard, and the exam server being used.

After analysing the source code for the OS X version of SEB we found that most of
the security restrictions are activated in the startKioskModeThirdPartyAppsAllowed()
function, found on line 1266 in SEBController.m, shown in Listing 2.

6

Listing 2: The startKioskModeThirdPartyAppsAllowed()-function [6]
1266 − (void) startKioskModeThirdPartyAppsAl lowed : [. . .] {
1267 // Switch to k iosk mode by s e t t i n g the proper p re sen ta t i on opt ions
1268 // Load pre fe rences from the system ’ s user d e f a u l t s database
1269 NSUserDefaults ∗ pre fe rences = [NSUserDefaults s tandardUserDefau l t s] ;
1270 BOOL showMenuBar = overrideShowMenuBar | | [p re fe rences

secureBoolForKey :@” org safeexambrowser SEB showMenuBar ”] ;
1271 // BOOL enableToolbar = [pre fe rence s secureBoolForKey : [. . .]
1272 // BOOL hideToolbar = [pre fe rence s secureBoolForKey : [. . .]
1273 NSAppl i ca t ionPresenta t ionOpt ions presenta t ionOpt ions ;
1274

1275 i f (al lowSwitchToThirdPartyApps) {
1276 [p re fe rences se tSecureBool :NO

forKey :@” org safeexambrowser elevateWindowLevels ”] ;
1277 } e l s e {
1278 [p re fe rences se tSecureBool : YES

forKey :@” org safeexambrowser elevateWindowLevels ”] ;
1279 }
1280

1281 i f (! al lowSwitchToThirdPartyApps) {
1282 // i f swi t ch ing to t h i r d par ty apps not allowed
1283 presen ta t ionOpt ions =
1284 NSAppl icat ionPresentat ionDisableAppleMenu +
1285 NSAppl icat ionPresentat ionHideDock +
1286 (showMenuBar ? 0 : NSApplicat ionPresentat ionHideMenuBar) +
1287 NSApp l i ca t ionPresen ta t ionDi sab leProces sSwi t ch ing +
1288 NSApp l i ca t ionPresen ta t ionDi sab leForceQui t +
1289 NSAppl i ca t ionPresenta t ionDi sab leSess ionTermina t ion ;
1290 } e l s e {
1291 presen ta t ionOpt ions =
1292 (showMenuBar ? 0 : NSApplicat ionPresentat ionHideMenuBar) +
1293 NSAppl icat ionPresentat ionHideDock +
1294 NSAppl icat ionPresentat ionDisableAppleMenu +
1295 NSApp l i ca t ionPresen ta t ionDi sab leForceQui t +
1296 NSAppl i ca t ionPresenta t ionDi sab leSess ionTermina t ion ;
1297 }
1298

1299 @try {
1300 [[MyGlobals sharedMyGlobals]

se tS tar tK ioskChangedPresenta t ionOpt ions : YES] ;
1301

1302 DDLogDebug(@” se tP re sen ta t i onOpt ions : %lo ” , p resenta t ionOpt ions) ;
1303

1304 [NSApp se tP re sen ta t i onOpt ions : p resen ta t ionOpt ions] ;
1305 [[MyGlobals sharedMyGlobals]

s e tP re sen ta t i onOpt ions : presenta t ionOpt ions] ;
1306 }
1307 @catch (NSException ∗ except ion) {
1308 DDLogError (@” Error . Make sure p re sen ta t i on opt ions are v a l i d . ”) ;
1309 }
1310 }

7

3.3. Accessing an exam server without Safe Exam Browser

Since the architecture (as described in Section 1.1) uses HTTP or HTTPS to serve the
exam, a possible way to cheat is to access the exam server via a regular web browser.
This enables us to circumvent the enforced restrictions of SEB. Problems such as finding
the URL and circumventing any required header data must be handled.

The exam server verifies that the student is using SEB by checking an HTTP-header
that SEB includes for all requests to the server.

Figure 1: SEB Config Tool screenshot including HTTP-header data for one exam

By analysing the source code of SEB we found that the data for this extra header
is available in the ‘.seb’ configuration file downloaded from the exam server when the
student wants to connect to the exam server. This file is compressed and encrypted using
the passcode students are provided for accessing the exam. SEB could be modified to
decrypt this file and extract the header data on launch instead of starting the browser.
We could then manually insert it into requests coming from another browser like for
example Google Chrome, and by running that browser in full screen presentation mode,
we can achieve a visually similar experience.

8

4. Result

This chapter will detail and discuss the results of our work.

4.1. Running inside a Virtual Machine

While working on this project we succeeded in running an unmodified version of SEB
inside a VM using multiple different strategies. These are detailed below.

4.1.1. QEMU

Analysing the source code we found that there is no mention of the QEMU virtualisation
software in the blacklist. When tested, we found that running SEB in a QEMU VM
worked without any problems, SEB started as expected and accepts an exam. There
were no modifications to QEMU required in order for this to work, we simply set up a
guest OS and installed SEB .

4.1.2. VirtualBox

At first, the created VM could not successfully start SEB. See Figure 2. We then made
the modifications in Listing 3 to configure VirtualBox in order to report a different man-
ufacturer and product to the OS.

Figure 2: SEB fails to start in a standard VirtualBox VM

In order to fake our manufacturer and product, we used the following terminal com-
mands:

These commands changes what the system reports as the hardware parameters to, in
this particular case, ”Other” on both the vendor and product. Since this is not blacklisted
by SEB, it successfully starts. See Figure 3.

9

Listing 3: Modifications to default configuration in VirtualBox
1 VBoxManage s e t e x t r a d a t a ” Safe Exam Browser ”

” VBoxInternal / Devices / pcb ios /0/ Config /DmiSystemVendor ” ” Other ”
2 VBoxManage s e t e x t r a d a t a ” Safe Exam Browser ”

” VBoxInternal / Devices / pcb ios /0/ Config /DmiSystemProduct ” ” Other ”

Figure 3: A screenshot of SEB started in a tweaked VirtualBox VM

4.2. Modify and recompile Safe Exam Browser to remove security checks

While investigating the SEB for OS X source code, we found that the majority of the
restrictions are set up inside the awakeFromNib and startKioskMode functions. See an
extract in Listing 4. The first, awakeFromNib, spawns a number of observers which
notifies SEB of OS events relevant to the intended system restrictions. startKioskMode
is where SEB actually implements the restrictions, setting running modes like. These
restrictions can be evaded fully by simply adding presentationOptions = 0;, as well as making
some other minor changes in SEBController.m (full changes can be seen in Listing 4).

10

Listing 4: The modifications to the startKioskModeThirdPartyAppsAllowed()-function,
additions highlighted in green, changes in yellow

1281 NSAppl i ca t ionPresenta t ionOpt ions eva lua tedPresen ta t ionOpt ions ;
1282 i f (! al lowSwitchToThirdPartyApps) {
1283 // i f swi t ch ing to t h i r d par ty apps not allowed
1284 eva lua tedPresen ta t ionOpt ions =
1285 NSAppl icat ionPresentat ionDisableAppleMenu +
1286 NSAppl icat ionPresentat ionHideDock +
1287 (showMenuBar ? 0 : NSApplicat ionPresentat ionHideMenuBar) +
1288 NSApp l i ca t ionPresen ta t ionDi sab leProces sSwi t ch ing +
1289 NSApp l i ca t ionPresen ta t ionDi sab leForceQui t +
1290 NSAppl i ca t ionPresenta t ionDi sab leSess ionTermina t ion ;
1291 } e l s e {
1292 eva lua tedPresen ta t ionOpt ions =
1293 (showMenuBar ? 0 : NSApplicat ionPresentat ionHideMenuBar) +
1294 NSAppl icat ionPresentat ionHideDock +
1295 NSAppl icat ionPresentat ionDisableAppleMenu +
1296 NSApp l i ca t ionPresen ta t ionDi sab leForceQui t +
1297 NSAppl i ca t ionPresenta t ionDi sab leSess ionTermina t ion ;
1298 }
1299 presen ta t ionOpt ions = 0;
1300 @try {
1301 [[MyGlobals sharedMyGlobals]

se tS tar tK ioskChangedPresenta t ionOpt ions : YES] ;
1302

1303 DDLogDebug(@” se tP re sen ta t i onOpt ions : %lo ” ,
eva lua tedPresenta t ionOpt ions) ;

1304

1305 [NSApp se tP re sen ta t i onOpt ions : p resen ta t ionOpt ions] ;
1306 [[MyGlobals sharedMyGlobals]

s e tP re sen ta t i onOpt ions : presenta t ionOpt ions] ;
1307 }
1308 @catch (NSException ∗ except ion) {
1309 DDLogError (@” Error . Make sure p re sen ta t i on opt ions are v a l i d . ”) ;
1310 }

With these changes made we can compile a version of SEB that does not block ap-
plication switching, allowing a student to access cheating information running in the
background of SEB. Our modified SEB, still visibly identical to an unmodified version, is
now just a full-screen browser.

4.3. Accessing an exam server without Safe Exam Browser

We realised that pursuing this approach was outside of the scope of our analysis, so we
did not develop a proof of concept using this approach.

11

5. Discussion

The worries and concerns that running an exam client on the students own computers
have been confirmed by our results. In this section we discuss our results and elaborate
on how we think the issues identified impact the future of digital examinations.

5.1. Fundamental Problems

Making any system into a secure exam platform is a grandiose claim to make, and proves
too big for SEB to deliver. In general we believe it is a very difficult task, if possible at
all, to implement security critical applications such as an exam application in an envir-
onment that is ultimately uncontrolled by the application. There is always some degree
of user trust in such systems, and requiring the trust of users during an examination
should be avoided if possible.

5.2. Running inside a Virtual Machine

The protection SEB has against being executed in VM is decidedly insufficient according
to our results. The checks, at the time of writing this report, for a VM environment is only
to check for a short list of manufacturers and products as a blacklist. We have shown
that it is possible to use either a piece of VM software that SEB does not blacklist, like
QEMU, or to simply change certain values in the configuration of another VM software
which SEB actually does attempt to blacklist, such as VirtualBox.

From a students point of view, this is a simple and easy way to get around the restric-
tions. Although some modification is often required, we believe that with instructions
any student could utilise this way of cheating.

Unfortunately there is not a clear way to solve this issue, but in general it would be
wise to look at a more sophisticated method of detecting a VM environment. Either by
extending the blacklist to other hardware parameters such as network controllers (Vir-
tIO), processors (QEMU Virtual CPU), disk devices (VMware Virtual disk), and graphics
controllers (VMware SVGA 3D) to name a few or by detecting certain characteristics that
a VM introduces. However, in SEBs defense, in reality this is a cat and mouse game, as
a user need only look at how the software detects the VM components and adapt their
approach accordingly.

5.3. Modify and recompile Safe Exam Browser to remove security checks

The results show that there are no restrictions against modifying and compiling your
own version of SEB. We suggest that the detectability of this type of cheating in an
exam is even lower than running SEB in a VM, since no middleware can be found upon
inspection. It is also very easy as a student to utilise since it only requires one person
to do the modification, packaging and then distributing of the binary (potentially under
the name Unsafe Exam Browser) to other students. The knowledge requirements to use
are therefore the same as to use the regular version of SEB.

12

One idea to improve the system would be to have the server check the integrity of the
client software by asking it for some checksum. But that takes us back to the original
problem. A server side way of verifying that a student is indeed running the correct
version of SEB can be fooled by the response from the client since it is spoofed as well,
if the source codes was modified to do that. Solving this particular problem when we
have a piece of client side software, that executes such a substantial part of the system
logic, is difficult as the user can choose to compile the software themselves.

In order to really solve this issue, a change in the overall architecture is needed. We
need to move more of the logic to the server. One way to do this is for the server to not
only serve the exam, but serve the binary that restricts the student computer. The client-
side implementation is changed into a simple loader which downloads a binary version
of SEB for the platform the student laptop is running and then execute this binary. This
binary could be bundled with the exam configuration. This would make it possible for
an institution conducting digital examinations to include security features in the binary
that a student can not prepare for in advance.

5.4. The future of digital examination

As mentioned many times throughout this report, the students computer should not be
trusted to behave as desired by the examiner. Modifications to the hardware and OS
are always possible when the user has administrative rights. This can be used to trick
applications so they do not behave as expected.

We believe that due to this problem, future digital examinations must be performed in
controlled environments where the student has limited rights to modify the OS, and are
only allowed to run the exam client. The exam client could even be executed at startup,
to prevent the user from downloading and starting a modified version.

This dramatically decreases the risk that the chain of trust is ever broken, and that the
student can subsequently cheat when using the exam computer.

5.5. Future work

If we had more time to work on this project, the next item to focus on would have been
to build a sandbox environment to load SEB in, simulating positive responses to relevant
system calls made by SEB. This way we can run an official version of SEB without having
to make modifications to the source code, and still have the same behaviour as when
security checks are removed.

13

6. Conclusion

From the beginning, trusting a students computer to play by the rules implies a trust-
based system. As expected, breaking out of SEB and accessing other applications while
taking an exam was possible in multiple ways. The anti-VM feature in SEB is unsuccess-
ful in stopping most VM software with small modifications to the default configuration,
and fails entirely at stopping other VM software, even unmodified.

The whole idea of running exam kiosk software like SEB on students own computers,
as a means of saving money, only serves to provide the exam guards with a false sense of
security that students can not cheat. In this report we have, in numerous ways, proven
the claim that SEB turns any computer into a secure platform false.

Even if the specific loopholes identified in this report are fixed, we are doubtful that
the strategy employed by SEB can, on its own, be effective at actually locking down any
given computer and transform it into a secure exam kiosk.

Ultimately, since the signs of cheating are generally more difficult to detect when
computers are involved, the idea of allowing students to bring their own hardware for
an exam, thinking that SEB will turn those machines into secure workstations following
a set of rules placed by the institution giving the exam, is fundamentally flawed.

The silver lining is that without any further modifications SEB could be a good fit
to use as an exam kiosk on controlled computers. As a means of simply locking out
other functions of the operating system while students are taking an exam, the software
performs rather well. It just can not make such promises when students own computers
are used to run SEB. The hardware and OS running SEB must be carefully inspected
to ensure that no modifications are made to either the SEB installation or any other
applications prior to the exam.

14

References

[1] Patricia MacKown Kevin Yee. “Detecting and Preventing Cheating During Exams”.
In: (2009). Accessed 2016-05-15. URL: https://www.syr .edu/gradschool/pdf/
resourcebooksvideos/AIBook/AIYee.pdf.

[2] Safe Exam Browser. Safe Exam Browser - About SEB. URL: http://safeexambrowser.
org/about overview en.html (visited on 9th May 2016).

[3] Safe Exam Browser. Safe Exam Browser. URL: https://github.com/SafeExamBrowser/
(visited on 10th May 2016).

[4] Safe Exam Browser. Safe Exam Browser. URL: http://safeexambrowser.org/about
overview en.html#Features (visited on 10th May 2016).

[5] Safe Exam Browser. seb-win/SebWindowsClientMain.cs at 6591a3dae8ef2311d2...
SafeExamBrowser/seb-win. URL: https://github.com/SafeExamBrowser/seb-win/
blob/6591a3dae8ef2311d26f09fbe72ea5365b2ba490/SebWindowsClient/SebWindowsClient/
SebWindowsClientMain.cs#L264 (visited on 6th May 2016).

[6] Safe Exam Browser. seb-mac/SEBController.m at 278c760e145173a93cbc4a732d7...
SafeExamBrowser/seb-mac. URL: https://github.com/SafeExamBrowser/seb-mac/
blob/278c760e145173a93cbc4a732d756c53db5cd996/Classes/SEBController .m#
L1266 (visited on 15th May 2016).

15

https://www.syr.edu/gradschool/pdf/resourcebooksvideos/AIBook/AIYee.pdf
https://www.syr.edu/gradschool/pdf/resourcebooksvideos/AIBook/AIYee.pdf
http://safeexambrowser.org/about_overview_en.html
http://safeexambrowser.org/about_overview_en.html
https://github.com/SafeExamBrowser/
http://safeexambrowser.org/about_overview_en.html#Features
http://safeexambrowser.org/about_overview_en.html#Features
https://github.com/SafeExamBrowser/seb-win/blob/6591a3dae8ef2311d26f09fbe72ea5365b2ba490/SebWindowsClient/SebWindowsClient/SebWindowsClientMain.cs#L264
https://github.com/SafeExamBrowser/seb-win/blob/6591a3dae8ef2311d26f09fbe72ea5365b2ba490/SebWindowsClient/SebWindowsClient/SebWindowsClientMain.cs#L264
https://github.com/SafeExamBrowser/seb-win/blob/6591a3dae8ef2311d26f09fbe72ea5365b2ba490/SebWindowsClient/SebWindowsClient/SebWindowsClientMain.cs#L264
https://github.com/SafeExamBrowser/seb-mac/blob/278c760e145173a93cbc4a732d756c53db5cd996/Classes/SEBController.m#L1266
https://github.com/SafeExamBrowser/seb-mac/blob/278c760e145173a93cbc4a732d756c53db5cd996/Classes/SEBController.m#L1266
https://github.com/SafeExamBrowser/seb-mac/blob/278c760e145173a93cbc4a732d756c53db5cd996/Classes/SEBController.m#L1266

Appendices

A. Individual Contribution

Both students contributed equally in all parts of the project. On all practical tests both
students have been active and trying different things. In the writing of this report, both
students have written about the same amount in all sections.

16

	Background
	System architecture

	Goal
	Scope and limitations
	Testing Environment

	Description of Work
	Running inside a vm
	Modify and recompile seb to remove security checks
	Accessing an exam server without seb

	Result
	Running inside a vm
	QEMU
	VirtualBox

	Modify and recompile seb to remove security checks
	Accessing an exam server without seb

	Discussion
	Fundamental Problems
	Running inside a vm
	Modify and recompile seb to remove security checks
	The future of digital examination
	Future work

	Conclusion
	References
	Appendix Individual Contribution

